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CHARACTERISTICS OF LOCAL COMPLIANCE

OF AN ELASTIC BODY UNDER A SMALL PUNCH INDENTED

INTO THE PLANE PART OF ITS BOUNDARY

UDC 539.3:621.833I. I. Argatov

An asymptotic solution of the contact problem of an elastic body indented (without friction) by a
circular punch with a flat base is obtained under the assumption of a small relative size of the
contact zone. The resulting formulas involve integral characteristics of the elastic body, which depend
on its shape, dimensions, fixing conditions, Poisson’s ratio, and location of the punch center.These
quantities have the mechanical meaning of the coefficients of local compliance of the elastic body.
Relations that, generally, reduce the number of independent coefficients in the asymptotic expansion
are obtained on the basis of the reciprocal theorem. Some coefficients of local compliance at the center
of an elastic hemisphere are calculated numerically. The asymptotic model of an elastic body loaded
by a point force is discussed.

Introduction. The need for more accurate calculations of contact pressures between machine elements
stimulates the studies of contact problems of the theory of elasticity for bodies different from a half-space. The
existing solutions for an elastic layer [1, 2], elastic spatial wedge [3], and elastic truncated sphere [4, 5] are based
on the explicit representation of the Green function. Hetényi [6] and Sheveleva [7] developed a method of specular
reflection for constructing approximately the Green functions for elastic spatial quarter and octant. Tsvetkov and
Chebakov [8] and Aleksandrov and Pozharskii [9] developed a homogeneous-solution method for an elastic plate.
Many numerical algorithms for solving contact problems have been proposed (see, e.g., [10–13]).

Under the assumption of a small contact zone, contact problems can be solved by asymptotic methods [1–3,
5]. Argatov [14] showed that, to construct several first terms of the asymptotic expansion of the contact-pressure
intensity, it suffices to know several coefficients of the asymptotic expansions of regular components of singular
solutions with singularities corresponding to the point force (Green function), point moments, and polymoments.
In the present paper, these coefficients are interpreted as characteristics of local compliance of an elastic body.

1. Formulation of the Contact Problem for a Punch with a Flat Base. Local-Compliance
Matrix. We consider an elastic body occupying a three-dimensional domain Ω. At the boundary of the body,
there is a site Σ, which lies in the Ox1x2 plane. Let a circular punch whose center coincides with the coordinate
origin be pressed frictionlessly into Σ. We assume that the radius aε of the punch base ω(ε) is small compared to
the characteristic dimension l of the body Ω. For convenience, we set

aε = εa∗, (1.1)

where ε is a small positive parameter and a∗ is a quantity comparable with l and independent of ε. As l, we take
the radius of the largest sphere with a center at the point O that can be enclosed in the region Ω. Let the body be
fixed along the part of the boundary Γu and stress-free on Γσ and Σ outside the contact region.

We denote the resultant vector and resultant moments of the system of forces acting on the punch by F3 and
M1 and M2, respectively. As a result of loading, the punch moves translationally for the distance δ0 and rotates.
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The rotation is determined by the angles β1 and β2. The contact-pressure intensity under the punch p satisfies the
following integral equation (see, e.g., [1, § 19]):∫ ∫

ω(ε)

G3(y1, y2;x1, x2, 0) p(y1, y2) dy1 dy2 = δ0 + β1x2 − β2x1. (1.2)

Here G3 is the vertical component of the Green vector function with a pole at the boundary point (y1, y2, 0).
The unknown quantities δ0, β1, and β2 are determined from the equations of equilibrium of the punch∫ ∫

ω(ε)

p(y) dy = F3,

∫ ∫
ω(ε)

{ y2

−y1

}
p(y) dy =

{M1

M2

}
. (1.3)

Remark 1. The contact pressure under the punch base should be positive. Skewness of the punch may
lead to detachment of the punch edge from the surface of the elastic body. However, it follows from the solution of
the axisymmetric contact problem for an elastic truncated sphere (see [5, § 5.2.1]) that, in the case of translational
indentation of the punch, the condition of full contact holds for reasonably small values of the parameter ε only.

Since the problem is linear, the quantities δ0, β1, and β2 should be related to F3, M1, and M2 by the linear
relation  Π00 Π01 Π02

Π10 Π11 Π12

Π20 Π21 Π22

 F3

M1

M2

 =

 δ0
β1

β2

. (1.4)

The quantities Πkl(ε) characterize the compliance of the elastic body Ω under the action of the punch with a flat
base ω(ε) applied at the point O at the face of the body Σ. For small ε, the displacement of the punch is mainly
due to the local deformation of the body Ω that occurs in the neighborhood of the punch (according to terminology
of [15, § 133], in the local-perturbation region). We call matrix (1.4) the local-compliance matrix. By virtue of the
reciprocal theorem δ′′0F

′
3 + β′′1M

′
1 + β′′2M

′
2 = δ′0F

′′
3 + β′1M

′′
1 + β′2M

′′
2 , the local-compliance matrix Π is symmetric.

One of the goals of the present paper is to construct an asymptotic representation of the matrix Π(ε) as
ε→ 0.

2. Asymptotic Modeling of Local Contact Interaction between an Elastic Body and a Punch.
We consider the expansion (see, e.g., [1; 16, § 4.14])

G3(y;x) = T3(x1 − y1, x2 − y2, x3) + g3(y;x), (2.1)

where g3(y;x) is the projection of the regular component of the Green vector function onto the vertical axis, T3 is
the part of the solution of the Boussinesq problem of an elastic half-space loaded by a unit force (see [16, § 5.11]),
where

πE

1− ν2
T3(x1 − y1, x2 − y2, 0) =

1√
(x1 − y1)2 + (x2 − y2)2

. (2.2)

Here E and ν are Young’s modulus and Poisson’s ratio of the material of the body Ω, respectively.
We use the following asymptotic formula (notation coincides with that in [14, 17]):

(πE/(1− ν2))g3(y;x1, x2, 0) = A0 +B1x1 +B2x2 −A(2)
0 y1 +A

(1)
0 y2

+C11x
2
1 + 2C12x1x2 + C22x

2
2 − (B(2)

1 x1 +B
(2)
2 x2)y1

+ (B(1)
1 x1 +B

(1)
2 x2)y2 + (1/2)(A(2,0)

0 y2
1 + 2A(2,1)

0 y1y2 +A
(2,2)
0 y2

2) + . . . . (2.3)

Here the dots denote the terms of order O(ε3) [in accordance with (1.1)]. It is noteworthy that, generally, the
coefficients that enter the right side of (2.3) (the method of calculating these coefficients is given in [14, 17]) depend
on the location of the point O (punch center).

Example 1. Let Ω be a layer of thickness h perfectly attached to the rigid base x3 = h. In this case, the right
side of (2.3) depends only on the squared distance between the points (y1, y2) and (x1, x2). According to [1], the fol-
lowing representation in the form of an absolutely convergent power series is valid for

√
(x1 − y1)2 + (x2 − y2)2 < 2h:

πE

1− ν2
g3(y;x1, x2, 0) = − 1

h

∞∑
m=0

am
h2m

[(x1 − y1)2 + (x2 − y2)2]m.

148



Comparing this expansion with (2.3), we infer that the only nonzero coefficients are

A0 = −a0/h, C11 = C22 = −a1/h
3,

(2.4)

A
(2,0)
0 = A

(2,2)
0 = −2a1/h

3, B
(2)
1 = −2a1/h

3, B
(1)
2 = 2a1/h

3.

The dimensionless coefficients a0 and a1 as functions of ν are given in [5, Table 1.2] (see also [18]). For example,
a0 = 1.3769, and a1 = −0.6276 for ν = 0.3.

Substituting (2.1)–(2.3) into (1.2) and integrating, we obtain the equation

1− ν2

πE

∫ ∫
ω(ε)

p(y1, y2) dy1 dy2√
(x1 − y1)2 + (x2 − y2)2

= δ0 + β1x2 − β2x1 − F̃3A0 − F̃3(B1x1 +B2x2)

−
2∑
i=1

M̃iA
(i)
0 − F̃3(C11x

2
1 + 2C12x1x2 + C22x

2
2)−

2∑
i=1

M̃i(B
(i)
1 x1 +B

(i)
2 x2)−

2∑
n=0

M̃2,nA
(2,n)
0 . (2.5)

Here F̃3 and M̃1, and M̃2 are the integral characteristics of the contact-pressure intensity (normalized force and
moments, respectively), which are equal to the quantities calculated from formulas (1.3) multiplied by (πE)−1(1−ν2)
and M̃2,n are the normalized polymoments of the distributed contact pressures:

M̃2,n =
1− ν2

πE
M2,n, Mm,n =

1
2
Cn2

∫ ∫
ω(ε)

y2−n
1 yn2 p(y) dy. (2.6)

Equation (2.5) is a so-called “coupled” integral equation of the contact problem for a finite elastic body [14]
and is a third-approximation equation: the coefficient A0 is a first-order correction for the geometry of the elastic
body, the fifth and sixth terms are second-order corrections, and the next terms are third-order corrections.

The method of reducing the integral equation (1.2) of the contact problem for an elastic layer to an ap-
proximate equation by polynomial approximation of the regular component of the integral-operator kernel was
proposed in [19] (see also [1, § 54]). The properties of the solutions of these equations are discussed in [5, § 1.2].
The term “coupled” means that, after a solution (with undetermined coefficients) of the integral equation of the
contact problem for an elastic half-space is constructed, Eq. (2.5) reduces to a system of linear algebraic equations.
Aleksandrov and Shmatkova [18] applied this method to the problem of a parabolic punch pressed into an elastic
layer. Argatov [17] obtained an asymptotic solution of the corresponding nonlinear resulting problem.

3. Solution of the Coupled Equation. Using the results of [20–22], we write the solution of Eq. (2.5) in
the form

p(x1, x2) =
E

π(1− ν2)
1√

a2 − x2
1 − x2

2

[
δ0 − F̃3A0 −

2∑
i=1

M̃iA
(i)
0 −

2∑
n=0

M̃2,nA
(2,n)
0

+ F̃3(C11 + C22)a2 − 2
(
β2 + F̃3B1 +

2∑
i=1

M̃iB
(i)
1

)
x1 + 2

(
β1 − F̃3B2 −

2∑
i=1

M̃iB
(i)
2

)
x2

− 2
3
F̃3(5C11 + C22)x2

1 −
16
3
F̃3C12x1x2 −

2
3
F̃3(C11 + 5C22)x2

2

]
. (3.1)

The quantities F̃3, M̃i, and M̃2,n should be related to δ0, β1, and β2. Integration of (3.1) yields

F̃3 = c
[
δ0 − F̃3A0 −

2∑
i=1

M̃iA
(i)
0 −

2∑
n=0

M̃2,nA
(2,n)
0 − 1

3
(C11 + C22)a2F̃3

]
, (3.2)

where c = 2π−1a is the translational capacity of the circular punch of base radius a (dependence on the parameter
ε is not indicated).
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Calculating the moments of the contact-pressure intensity (3.1) [see the second formula in (1.3)], we obtain

M̃1 = m
(
β1 − F̃3B2 −

2∑
i=1

M̃iB
(i)
2

)
, M̃2 = m

(
β2 + F̃3B1 +

2∑
i=1

M̃iB
(i)
1

)
, (3.3)

where m = 4(3π)−1a3 is the rotational capacity of the circular punch.
Finally, inserting (3.1) into (2.6), we find that

M̃2,0 =
a3

3π

(
δ0 + F̃3

[
A0 −

a2

15
(17C11 + C22)

]
−

2∑
i=1

M̃iA
(i)
0 −

2∑
n=0

M̃2,nA
(2,n)
0

)
; (3.4)

M̃2,1 = −32a5

45π
F̃3C12; (3.5)

M̃2,2 =
a3

3π

(
δ0 + F̃3

[
A0 −

a2

15
(C11 + 17C22)

]
−

2∑
i=1

M̃iA
(i)
0 −

2∑
n=0

M̃2,nA
(2,n)
0

)
. (3.6)

With allowance for (3.5), one can express the quantities M̃2,0 and M̃2,2 from Eqs. (3.4) and (3.6). The
determinant of this system is equal to 1+(3π)−1a3(A(2,0)

0 +A(2,2)
0 ) and does not vanish for reasonably small ε = a/l.

However, the exact solution is not necessarily required, since formulas (3.1)–(3.6) themselves are approximate.
4. Asymptotic Representation of the Local-Compliance Matrix. We now perform an asymptotic

analysis of relations (3.4)–(3.6) (see also [17]). Let the quantities δ0, β1, and β2 be fixed (independent of the
parameter ε). Then, from (3.2) follows the expansion F̃3 = εF̃ 0

3 + ε2F̃ 1
3 + . . . . It should be borne in mind that

formula (3.1) is derived by retaining terms of order ε3 compared to unity [see (2.5), where
√
x2

1 + x2
2
< εa∗]. Thus,

in accordance with the accuracy of Eq. (2.5), we confine ourselves to the approximation

M̃2,n ' M̃0
2,n, M̃0

2,0 = M̃0
2,2 = a3δ0/(3π), M̃0

2,1 = 0. (4.1)

Substitution of (4.1) into (3.2) yields(1
c

+A0 +
a2

3
(C11 + C22)

)
F̃3 +

2∑
i=1

M̃iA
(i)
0 =

(
1− a3

3π
(A(2,0)

0 +A
(2,2)
0 )

)
δ0.

Using similar reasoning to that used in deriving relation (4.1), we replace the last formula by the following one:(1
c

+A0 +
a2

3
(C11 + C22) +

a3

3πc
(A(2,0)

0 +A
(2,2)
0 )

)
F̃3 +A

(1)
0 M̃1 +A

(2)
0 M̃2 = δ0. (4.2)

Finally, Eq. (3.3) becomes

B2F̃3 + (1/m+B
(1)
2 )M̃1 +B

(2)
2 M̃2 = β1, −B1F̃3 −B(1)

1 M̃1 + (1/m−B(2)
1 )M̃2 = β2. (4.3)

Thus, the force F3 and the momentsM1 andM2 are related to the displacements of the punch δ0 and its angles
of rotation β1 and β2 by the approximate equations (4.2) and (4.3). Comparing (4.2) and (4.3) with (1.4), we obtain
the asymptotic formulas for the normalized components of the local-compliance matrix Π̃lk = πE(1− ν2)−1Πkl:

Π̃00 ' 1/c+A0 + a2(C11 + C22)/3 + a2(A(2,0)
0 +A

(2,2)
0 )/6, Π̃01 ' A(1)

0 , Π̃02 ' A(2)
0 ,

Π̃10 ' B2, Π̃11 ' 1/m+B
(1)
2 , Π̃12 ' B(2)

2 , (4.4)

Π̃20 ' −B1, Π̃21 ' −B(1)
1 , Π̃22 ' 1/m−B(2)

1 .

Formulas (4.4) relate the components of the matrix Π to the capacity characteristics of the punch c and m (which
depend only on the geometry of the punch base) and the coefficients in the asymptotic formula (2.3). The latter
coefficients depend on the shape and size of the elastic body Ω, its fixing conditions, location of the point O, and
Poisson’s ratio.

Since the matrix Π is symmetric, we have

A
(1)
0 = B2, A

(2)
0 = −B1, B

(1)
1 = −B(2)

2 . (4.5)
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The validity of these equalities can be verified by using the Betti formula and coefficients A(1)
0 , . . . , B

(2)
2 determined

in [14, 17] as coefficients in asymptotic formulas of the type (2.3) for certain singular solutions. However, the
reciprocity relations (4.5) and similar relations can easily be obtained directly from (2.3) with allowance for the
following equality implied by the Betty theorem (see, e.g., [23, Chap. 4, § 3.1]):

g3(y1, y2;x1, x2, 0) = g3(x1, x2; y1, y2, 0). (4.6)

Substituting expansion (2.3) into (4.6), we obtain (4.5) and the equalities

A
(2,0)
0 = 2C11, A

(2,1)
0 = 2C12, A

(2,2)
0 = 2C22. (4.7)

Thus, in the general case, the reciprocity relations (4.5) and (4.7) reduce the number of different coefficients in the
asymptotic solution constructed above.

Example 2. For a layer (see Example 1), formulas (2.4), (4.2), and (4.3) can be combined to give

F̃3 =
2aδ0
π

(
1− 2a0

π
ε− 8a1

3π
ε3
)−1

, M̃i =
4a3βi

3π

(
1 +

8a1

3π
ε3
)−1

(i = 1, 2). (4.8)

Expansion of expression (4.8) into a series in powers of the parameter ε = a/h yields

F3 =
2E

1− ν2
aδ0

{
1 +

2a0

π
ε+

(2a0

π

)2

ε2 +
[(2a0

π

)3

+
8a1

3π

]
ε3 +

[(2a0

π

)4

+
32a0a1

3π2

]
ε4 +O(ε5)

}
,

(4.9)

Mi =
4E

3(1− ν2)
a3βi

(
1− 8a1

3π
ε3 +O(ε5)

)
(i = 1, 2).

Formulas (4.9) coincide with formulas (48.2) and (50.2) in [1].
5. Calculation of the Coefficients A0 and C11 for the Center of an Elastic Hemisphere. Let the

elastic body Ω be shaped like a hemisphere of radius l and fixed over the spherical part of the boundary Γu. We
use the Bubnov–Galerkin method to construct an approximate solution of the problem for a unit force applied to
the center of the cut Σ.

Since the problem of determining the vector function g(0;x) [see (2.1)] is axisymmetric, one can use the
general solution of the Lamé equations in cylindrical coordinates r and z, expressed in terms of two harmonic
functions Φ1 and Φ2 in the Weber form (see [24, § 12]):

gr =
1− ν2

πE

∂

∂r

[
Φ1 + z

∂Φ2

∂z
+ 2(1− ν)Φ2

]
, gz =

1− ν2

πE

∂

∂z

[
Φ1 + z

∂Φ2

∂z
− 2(1− ν)Φ2

]
,

(5.1)

σzz =
1
r

∂

∂r

(
r
∂Φ
∂r

)
, τrz = − ∂2Φ

∂r∂z
, Φ = Φ1 + z

∂Φ2

∂z
.

As stress functions, we use the homogeneous harmonic polynomials

Φni = cni ρ
nPn(cos θ) (i = 1, 2), ρ =

√
r2 + z2, cos θ = z/

√
r2 + z2 (5.2)

(Pn is the Legendre polynomial). Substituting expressions (5.1) and (5.2) into the conditions σzz = 0 and τrz = 0
for z = 0, we eliminate one of the coefficients cn1 or cn2 : cn1 = 0 for even n or cn2 = −cn1 for odd n.

The homogeneous vector polynomial of the nth degree, which satisfies the homogeneous Lamé equations in
the half-space z > 0 and the condition that the stresses vanish at the boundary z = 0, has the components

Ṽ nr = −(1− α)(1/r)Φn+1 + [2− (1 + α)(n+ 1)](z/r)Φn + (1 + α)n(z2/r)Φn−1,
(5.3)

Ṽ nz = 2Φn − (1 + α)nzΦn−1, α ≡ ν(1− ν)−1

for even n and

Ṽ nr = (2/r)Φn+1 + [(1 + α)n− 2](z/r)Φn − (1 + α)n(z2/r)Φn−1,
(5.4)

Ṽ nz = −(1− α)Φn + (1 + α)nzΦn−1

for odd n. The first three vectors Ṽ
n

calculated by formulas (5.3) and (5.4) have the form

Ṽ
0

= ez, Ṽ
1

= rer − 2αzez, Ṽ
2

= −2zrer + (r2 + 2αz2)ez.
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TABLE 1

ν A0 C11 = C22

0.2 −1.5442 0.5943
0.25 −1.6027 0.6642
0.3 −1.6899 0.7585
0.35 −1.8214 0.8891
0.4 −2.0236 1.0763

Thus, the cylindrical components of the regular part of the Green vector functionG(0;x) satisfy the boundary
conditions

πE

1− ν2
gr

∣∣∣
Γu

= − 1
2(1− ν)

1
l

(
sin θ cos θ − (1− 2ν)

sin θ
1 + cos θ

)
,

(5.5)
πE

1− ν2
gz

∣∣∣
Γu

= −1
l

(
1 +

1
2(1− ν)

cos2 θ
)

for ρ = l and 0 6 θ 6 π/2. We use the following approximation of the vector function g(0;x):

vN (r, z) =
1− ν2

πE

N∑
n=0

cn

ln+1
Ṽ
n
(r, z). (5.6)

In this case, the unknown quantities are calculated by the formulas

A0 = c0/l, C11 = C22 = c2/l3.

To determine the coefficients c0, c1, . . ., and cN , we obtain a system of N + 1 linear algebraic equations using the
condition that the discrepancy in the boundary conditions (5.5) due to approximation (5.6) is orthogonal to each

vector Ṽ
0
, Ṽ

1
, . . ., and Ṽ

N
over the hemisphere. The calculation results are listed in Table 1. The calculations

were performed for N = 2–17. It should be noted that the relative error in determining A0 is as small as 2% even
for N = 2. To verify the results obtained, calculations by the method of boundary collocation for equidistant nodes
were also performed.

Conclusions. To refine the asymptotic formula (2.3), it is necessary to use additional parameters that
characterize the geometry of the elastic body. All local-compliance coefficients can be obtained by the complete
asymptotic expansion. Practically, it is possible to obtain explicitly only a few first terms of the asymptotic
representation of the contact pressure (see, e.g., [1, 5]).

By virtue of the reciprocity relations (4.5) and (4.7), expansion (2.3) is simplified:

(πE/(1− ν2))g3(y;x1, x2, 0) = A0 +Bixi +Biyi + Cijxixj + bijxiyj + Cijyiyj + . . . .

Here b11 = −B(2)
1 , b12 = b21 = B

(1)
1 , and b22 = B

(1)
2 ; summation is performed over repeated indices. The condition

that the linear and quadratic forms appearing in this expression are invariant with respect to rotation of the
coordinate axes implies that, in passing to a new coordinate system, the quantities Bi and Cij and bij should be
transformed as a vector and tensors, respectively.

If the body Ω and the parts of the boundary Γu and Γσ are symmetric, then b12 = 0 and b11 = b22 at the
point O. However, the last coefficients are determined by solving the corresponding nonaxisymmetric problem.

Formulas (1.4) and (4.4) can be considered as an asymptotic model of an elastic body under point loads
(forces and moments). It is well known (see, e.g., [25; 10, Chap. 10, § 1]) that the singular solution G(0,x) is
meaningless in the neighborhood of the point at which the force is applied. In particular, the displacement at this
point is unbounded, whereas formula (1.4) relates the force F3e3 to the generalized displacement δ0e3 (compare
with Example 1 in [26, § 8.9]).

It is also known (see [27, Chap. 7, § 21]) that the real distribution law of local loads is difficult to determine,
whereas the resultant force vector is usually known with a high degree of accuracy. A priori knowledge of the
distribution law of local loads is necessary (see [28, p. 301]) if, in calculations, they are reduced to point forces by
passing to the limit (see [29] and [28, Chap. 3, § 6]). At the same time, to construct an asymptotic model of a
point force, it is necessary to solve the coupled integral equation of the contact problem for an elastic body of finite
dimensions and thereby to determine approximately the pressure under the base of a small punch.

The author is grateful to S. A. Nazarov for useful discussions.
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